

Integrity ***** Service ***** Excellence

Residual Stresses in Polymer Matrix Composites – Characterization & Modeling

25 October 2017

Brent L. Volk, Ph.D. David Mollenhauer, Ph.D.

Composites Branch Materials and Manufacturing Directorate Air Force Research Laboratory

- Motivation & Background
- Predicting Residual Stresses
- Processing to Performance
- Experimental Characterization of Residual Stresses
- Summary & Conclusions

Motivation

- Residual stresses of thermosetting OMCs pose a significant cost and schedule challenge
- Implement ICMSE approach to:
 - Predict residual stresses as function of cure cycle and postcure method
 - Optimize cure cycle
 - Minimize need for retooling, rework, and redesign

Background

- Residual stress formation during curing primarily a result of:
 - Thermal expansion mismatch
 - Interlaminar interactions
 - Cure shrinkage effects
- CTE mismatch insufficient approximation for parts with increasing complexity
- Residual stresses modify reference configuration and effective part strength

- Motivation & Background
- Predicting Residual Stresses
- Processing to Performance
- Experimental Characterization of Residual Stresses
- Summary & Conclusions

Material Properties for Process Modeling

A Century of Scientific Excellence. We Make it Possible!

• Material characterization testing for material property cards

Properties for Nonlinear
Mechanical Analysis
Viscosity
Resin modulus
Cure shrinkage
Coefficient of thermal expansion
Poisson's Ratio

- Create material characterization property cards for software usage
 - Epoxy, BMI, & PI laminate materials
 - Film adhesives
 - Honeycomb
 - Composite tooling materials

Gap Analysis of Current SOTA

Prediking 1

A Century of Scientific Excellence. We Make it Possil

 Current process models represent the mechanical behavior of the polymer using elastic or pseudoviscoelastic models

Integrated Post Cures (1-4)

Int

- Key to accurately predicting residual stresses
 - Capturing numerous excursions of material above and beyond the evolving glass transition temperature during typical cure cycles

- Elastic-Viscoplastic (E-VP) Model with the following assumptions
 - Viscous component allows unrestricted creep in rubbery region and elimination of residual stresses
 - Creep is negligible when the material is solidified

Cure Cycle 88ABW-2017-5207

- Motivation & Background
- Predicting Residual Stresses
- Processing to Performance
- Experimental Characterization of Residual Stresses
- Summary & Conclusions

Case Study – Angle Bracket

- Layup: [45/90/-45/0]_{2s}
- Material: 5320-1/IM7
- Residual stress states:
 - i. No residual stresses
 - ii. $\alpha \Delta T$ mismatch
 - iii. 135°C gel temp 0.7°C/min ramp rate

Angle Bracket – Processing

A Century of Scientific Excellence. We Make it Possible!

88ABW-2017-5207

Angle Bracket – Damage

Angle Bracket – Performance

A Century of Scientific Excellence. We Make it Possible!

Case	Failure Load (N)
No Residual Stresses	2400
CTE Mismatch	1200
Full Processing Simulation	1875
Experiments	1550 +/- 200

88ABW-2017-5207

- Motivation & Background
- Predicting Residual Stresses
- Processing to Performance
- Experimental Characterization of Residual Stresses
- Summary & Conclusions

Moiré Interferometry

A Century of Scientific Excellence. We Make it Possible!

•What Is It?

Full-field optical technique that measures in-plane displacements on a surface

•How Does It Work?

 Laser light is diffracted according to the grating frequency, laser wavelength, and angle of incidence. Grating deformations create a pattern that is a contour map of in-plane displacements.

•Capabilities:

 Displacement sensitivity is 0.417 mm per fringe contour. Can be improved by at least a factor of 10 through digital phase-shifting analysis.

•Advantage:

- Quantitative displacements over the entire field of view

Moiré Interferometry

Strain Redistribution due to Saw Cut (basic concept)

- Apply diffraction grating
- Measure 'null' field
- Cut specimen
- Measure change in surface strains

Strain Redistribution due to Saw Cut (textile composite)

A Century of Scientific Excellence. We Make it Possible!

Mollenhauer and Holl, "Characterization of Bundle-Level Residual Strains in Woven Composites Using Moiré Interferometry," 39th International SAMPE Symposium and Exhibition, Anaheim, California, 1994.

(braided composite compared to model)

- Experiment: 5-layer Compacted triax-braid
- Model 1: 1-layer <u>Un</u>compacted triax-braid (i.e. resin rich)
- Model 2a: 5-layer Compacted braid (only top layer modeled)
- Model 2b: same as 2a except Virtually "Sanded"

(braided composite compared to model)

(laminated composite: experiment and simulation)

- **Residual Stress Measurements & Analysis**
 - Use full-field techniques for determination of effects of released residual stresses in laminated and textile flanges
 - Develop interim hooks between COMPRO 3D and BSAM via ABAQUS solutions
 - Develop complimentary models in BSAM to evaluate DOE cure cycles

Strain Redistribution due to Saw Cut (multiple cure cycle effects)

- Flat leg's of all 8 specimen types completed
 - No discernable difference observed
- Preliminary look at curved specimens completed
- Specimens 2B and 3B obtained for detailed curved specimen examination

Cure Cycle	Gel Temp, °C (°F)	Post Cure Ramp Rate, °C/min (°F/min)	Post Cure Method
3A	135 (275)	fast, 0.8°C/min (1.4°F/min)	I
2B	93 (200)	slow, 0.3°C/min (0.5°F/min)	FS
4A	135	slow	I
1A	93	fast	I
4B	135	slow	FS
2A	93	slow	1
3B	135	fast	FS
1B	93	fast	FS

- Motivation & Background
- Predicting Residual Stresses
- Processing to Performance
- Experimental Characterization of Residual Stresses
- Summary & Conclusions

- Residual stress prediction and characterization is challenging in polymer matrix composites
- Elastic-viscoplastic constitutive model introduced to capture the evolving mechanical properties during cure
 - *First* model to predict trends for cure cycles with freestanding postcures
- Moiré interferometry utilized to measure residual stresses
 - Accurate, but time consuming, technique

88ABW-2017-5207