

Tailoring performance of nanoelectronics using strain engineering

Conal E. Murray IBM T.J. Watson Research Center

conal@us.ibm.com

10/24/2017

© 2017 IBM Corporation

Outline

Motivation

- \triangleright link between mechanical response and device performance
- \triangleright measurement techniques

Strain distributions in Si-based technology

- \triangleright elastic anisotropy
- \triangleright effects of feature geometry on device channel strain

Depth-dependent strain distributions in metallization

 \triangleright constraint of plastic relaxation

Summary and Conclusions

Reaching new heights

en.wikipedia.org/wiki/Sputnik_1

Sputnik 1: **1 W transmitter (20, 40 MHz)**

Apollo GC: 1.024 MHz, 64 KB

en.wikipedia.org/Wiki/ Apollo_Guidance_Computer

Motivation

Nanomaterials:

- **new properties enabled by increasing** surface to volume ratio
	- \triangleright strength
	- \triangleright electronic behavior
	- \triangleright interfaces are everywhere
- semiconductor device scaling
	- \checkmark increased density
	- **x** lithographic scaling is no longer sufficient in improving device performance
	- \triangleright new materials and geometries must be incorporated

wall321.com

P. Hashemi et al., ECS Trans. **75**, 39 (2016)

4 C.E. Murray | © 2017 IBM Corporation

Issues associated with device performance

- strained Si channels lead to enhanced carrier mobility in devices
- composition, phase transitions, and microstructure of device components
- mechanical behavior and interfacial scattering within devices

PHYSICAL REVIEW

VOLUME 94. NUMBER 1

APRIL 1, 1954

Piezoresistance Effect in Germanium and Silicon

CHARLES S. SMITH Bell Telephone Laboratories, Murray Hill, New Jersey (Received December 30, 1953)

Uniaxial tension causes a change of resistivity in silicon and germanium of both n and ϕ types. The complete tensor piezoresistance has been determined experimentally for these materials and expressed in terms of the pressure coefficient of resistivity and two simple shear coefficients. One of the shear coefficients for each of the materials is exceptionally large and cannot be explained in terms of previously known mechanisms. A possible microscopic mechanism proposed by C. Herring which could account for one large shear constant is discussed. This so called electron transfer effect arises in the structure of the energy bands of these semiconductors, and piezoresistance may therefore give important direct experimental information about this structure.

carrier mobility enhancement through strain engineering

IBM Research

Methods to strain Si

Stressed liner materials:

- \triangleright discontinuities in overlying features
- \triangleright spacer / gate structures produce edges
- \triangleright same sign of strain induced in channel

Embedded strained features: F F

- \triangleright in-plane "uniaxial" loading of channel
- \triangleright lattice-mismatched material ($\Delta \varepsilon$)
- \triangleright Si(Ge) \rightarrow compressive strain
- \triangleright Si(C) \rightarrow tensile strain

Variation in piezoresistive coefficients:

- \triangleright device layout (edge effects) will impact strain
- \triangleright need a method to quantify stress induced in Si

- \triangleright strain resolution \sim mid 10⁻⁴
- **x** relaxation due to sample prep.

Mechanical response of strained films

Blanket films:

- radius of curvature, R, related to biaxial film stress, $\sigma_{film} = \Delta \epsilon E_{film} / (1 v_{film})$
- **force and moment balance between thin film and substrate**
- **assumes uniform stress throughout film**

film

 \triangleright no lateral dependence of stress, film thickness, modulus (E), adhesion

Timoshenko

 J. Opt. Soc. Am. **11**, 233, (1925) 2 sub \mathbf{v}_{sub} $\frac{\text{film}}{6}$ R t t 6 E $\sigma_{\text{film}} \approx \frac{L_{\text{sub}}}{C} \cdot \frac{L_{\text{sub}}}{D_{\text{min}}}$ ($t_{\text{sub}} >> t_{\text{film}}$) $(E_{\text{film}}^{\text{3}} + E_{\text{sub}}^{\text{3}})^{\text{3}}$ $\sin\left(t_{\rm film}+t_{\rm sub}\right)$ 3 sub ^{\mathbf{t}}sub 3 film \mathfrak{t} film f_{film} $\frac{f_{\text{film}}}{f_{\text{film}}}$ t_{film} + t $\text{E}_{\text{film}}^{\text{}}\text{t}^3_{\text{film}} + \text{E}_{\text{sub}}^{\text{}}\text{t}$ 6 1 σ $\ddot{}$ $\ddot{}$ $=$ $\frac{1}{\cdot}$. $\Delta \varepsilon$ R **Stoney** Proc. Roy. Soc. Lon. A **82**, 172 (1909)

 $\left\{\begin{matrix} \end{matrix}\right\}^{t_{\text{film}}}$

sub

Effects of substrate anisotropy on curvature

Deflection [um]

505 nm thick $Si₃N₄$ film on Si (001)

Neumann's principle:

- 2-fold symmetry \rightarrow two principal curvatures
- 3-fold or 4-fold symmetry \rightarrow isotropic

C.E. Murray & K.L. Saenger, J. Appl. Phys. **104**, 103509 (2008)

501 nm thick Si3N⁴ 505 nm thick Si film on Si (011) ³N⁴

 $Si₃N₄$

XRD microbeam measurements of strained Si

 \triangleright assess efficacy of strain transfer to silicon-on-insulator (SOI) channel regions

BOX

SOI

APS 2ID-D:

Ex. 1: Strain in SOI channel due to embedded features

- 40 nm thick e-SiC straining 65 nm wide SOI channel ($\Delta \epsilon = -0.472\%$)
- \triangleright measured e-SiC strain is equivalent near SOI channel and ~ 1 µm from channel
- \triangleright greater SOI strain in channel region than under e-SiC features

 \triangleright measured SOI strain ~ 95% of calculated value in SOI channel (Eshelby inclusion method)

IBM Research

- stressor features fabricated from blanket $Si₃N₄$ films
- blanket film stress (σ_B) = -2.5 GPa (curvature)
- **e** elastic relaxation at feature edges induces deformation in underlying layers
- investigate SOI strain distributions vs. $Si₃N₄$ feature width

distribution captured

 \geq calculated $\sigma_{\rm B} = -2.5$ GPa

*C.E. Murray, J. Appl. Phys. **100**, 103532 (2006)

#C.E. Murray et al., J. Appl. Phys. **104**, 013530 (2008)

 $Si₃N₄$

SOI

-10 -8 -6 -4 -2 0 2 4 6 8 10

Distance from edge $[\mu m]$

-0.10

 $-0.08 -$

-0.06

BEM

edge-force

O

Effects of stressor size on underlying strain

IBM Research

- **Si₃N₄ features: -2.5 GPa blanket film stress (wafer curvature and microbeam XRD)**
	- strain in SOI varies due to overlapping stress concentrations at edges
	- \triangleright outside of features: SOI strain decreases with decreasing $Si₃N₄$ width

C.E. Murray et al., Thin Solid Films **530**, 85 (2013)

Processing-induced stresses in plated Cu films

Subsequent processing exposes metallization to higher temperatures ($T_p \sim 400 \degree C$ **)**

- free surface accommodates Cu extrusions (creep) to reduce stress as Cu film temperature decreases from process temperature, T_p :
- deviates from linear stress / strain behavior
- \triangleright without plastic deformation, $\Delta T = 325$ °C increases stress by ~ 900 MPa

Capping layer modifies Cu film relaxation

- mitigates diffusion at cap / Cu interface
- what is the impact on stress at this interface?
- \triangleright exacerbate electromigration-induced voiding?

X-ray stress analysis of Cu films: diffraction geometry

Conventional XRD:

Cu (220) reflection studied

in capped, Cu films

- 21 points $(\pm \psi)$ for d vs. $sin^2(\psi)$ analysis
- \triangleright σ_B and effective $d_{//}$ ($\psi = 90^0$)

Glancing angle XRD:

- special case of $|\psi| \sim 90^0$
- Symmetric condition ($\alpha_i = \alpha_f$) mitigates refraction effects
- Cu (220) reflection vs. α_i

Results: near-surface lattice spacings

- Cu (220) lattice spacing is larger near Cu surface capped with $SiC_xN_vH_z$
- **constraint imposed by SiC_xN_yH_z cap limits top Cu surface relaxation 350 °C deposition**
- small change of in-plane lattice spacing for CoWP-capped Cu film **< 100 ⁰C deposition**

- 85% increase of in-plane stress near cap / Cu interface
- CoWP deposition only produces elastic deformation near cap / Cu interface $(\Delta \sigma < 10 \text{ MPa})$

Depth-dependent stress gradients

- GIXRD measurements \rightarrow convolution of stress gradient and penetration depth
- use analytic approximation of stress gradient (constant + exponential decay)

- least-squares fitting of (220) data from $\text{SiC}_x\text{N}_y\text{H}_z$ -capped, 2.2 μ m Cu film
- \triangleright gradient extends 100 to 200 nm below interface

C.E. Murray, Appl. Phys. Lett. **104**, 081920 (2014)

Summary and Conclusions

- **Feature geometry impacts strain in nanoelectronic features**
	- \triangleright strain distributions can extend 40 x film thickness
	- \triangleright interfacial integrity \rightarrow key to strain transfer by elastic relaxation
	- \triangleright increasing device density \rightarrow decreasing stressor volume
- Complementary characterization techniques are essential \triangleright bridging different length-scales (cm \rightarrow nm)
	- \triangleright investigation of 3D strain distributions is needed to understand interaction among **all** components
- Stress gradients induced in Cu-based metallization
	- $Sic_{x}N_{y}H_{z}$ capping limits Cu plastic relaxation
	- \triangleright capping at lower temperatures produces elastic deformation \rightarrow no gradient

Acknowledgments

IBM:

- \blacksquare Z. Ren K. Saenger
- J. Holt J. Jordan-Sweet

G. Cohen

Argonne National Laboratory:

Z. Cai

This work was performed by the Research Alliance Teams at various IBM Research and Development facilities.

U.S. DOE, Office of Science, Office of Basic Energy Sciences, Contract No.'s DE-AC02-06CH1135, DE-AC02-06CH11357.